

Exploring Deep Closest Point: Learning Representations for Point Cloud Registration

Machine Learning for 3D Geometry

Kerem Yildirir

Kaan Oguzhan

Baris Sen

Yigit Aras Tunali

Problem Definition

- Align two point clouds
- Find a rigid transformation -> globally consistent
- Might have noise, occlusions

Kerem Yildirir, Kaan Oguzhan, Baris Sen, Yigit Aras Tunali

Source: https://new.certainty3d.com/blog/what-is-point-cloud-registrati2n/

Related Work

- Traditional approach:
 - Iterative Closest Point (ICP) [Besl and McKay, 1992]
- Deep learning approach
 - Extract point embeddings
 - Find **corresponding** points
 - Estimate **transformation** (rotation and translation)
- Deep Closest Point [Wang and Solomon, 2019]
- Generate better point embeddings [Kadam et al. 2021]
- Better point matching [Choy et al. 2020, Sarlin et al. 2020]
- Soft assignments, weighted SVD [Yan et al. 2019]

Deep Closest Point (DCP)

ПΠ

- Feature extraction: Dynamic Graph Convolutional Neural Networks (DGCNN) [Wang et al. 2019]
- Point matching: Transformer [Vaswani et al. 2017]
- Transformation estimation: Differentiable SVD

- Generate features per input point
- DGCNN explicitly incorporates local geometry (compared to PointNet)
- Local features from DGCNN are critical for high quality matching

Kerem Yildirir, Kaan Oguzhan, Baris Sen, Yigit Aras Tunali

Transformer

- Module to learn co-contextual information
- Attention model learns asymmetric function:

 $\phi: \mathbb{R}^{N \times P} \times \mathbb{R}^{N \times P} \to \mathbb{R}^{N \times P}$

Then this function is used as a residual on features:

 $\Phi_{\mathcal{X}} = \mathcal{F}_{\mathcal{X}} + \phi(\mathcal{F}_{\mathcal{X}}, \mathcal{F}_{\mathcal{Y}})$

 $\Phi_{\mathcal{V}} = \mathcal{F}_{\mathcal{V}} + \phi(\mathcal{F}_{\mathcal{V}}, \mathcal{F}_{\mathcal{X}})$

Essentially adds knowledge about other points

Pointer Module

- To avoid non-differentiable hard assignments
- Generate singly-stochastic "soft map" from one point cloud to another
- "m" is a soft pointer from each element of X into elements of Y

 $m(\boldsymbol{x}_i, \boldsymbol{\mathcal{Y}}) = \operatorname{softmax}(\Phi_{\boldsymbol{\mathcal{Y}}} \Phi_{\boldsymbol{x}_i}^{\top})$

SVD Module

- Use soft pointer to generate a matching averaged point in Y
- R, t extracted using SVD over pairings of X to predicted Y
- Differentiation of SVD as in Papadopoulo et al. (included in Pytorch)

 $\hat{\boldsymbol{y}}_i = \boldsymbol{Y}^\top \boldsymbol{m}(\boldsymbol{x}_i, \mathcal{Y}) \in \mathbb{R}^3$

Approach: Additions

- Additions to DCP
 - Adding **point color** as an additional input signal
 - Independent sampling of source and target point clouds
 - As-Rigid-As-Possible (ARAP) Regularization as additional loss

Approach: Datasets

- Mixamo [Adobe, 2018]
 - Training Set
 - $_{\circ}$ Validation Set
- TUM RGBD [Sturm et al., 2012]
 - \circ Test Set

Additional Color Input

- Color as a **strong signal** for matching points
- Extend the input vector from [X, Y, Z] to [X, Y, Z, R, G, B]
- Keep the rest of the architecture **fixed**

Experiments: Additional Color Input

Mixamo	MSE(R)	RMSE(R)	MAE(R)	MSE(t)	RMSE(t)	MAE(t)
DCP	51.460548	7.173	4.399	0.043476	0.208509	0.075243
DCP + Color	0.171919	0.4114631	0.106271	0.000035	0.005910	0.001755
DCP + Color + Noise	0.874181	0.934976	0.569145	0.000256	0.015988	0.007239

TUM RGBD	MSE(R)	$\operatorname{RMSE}(\mathbf{R})$	MAE(R)	MSE(t)	RMSE(t)	MAE(t)
DCP	387.982239	19.697266	11.2857	0.029045	0.170427	0.113288
DCP + Color	0.24021	0.490117	0.334967	0.000094	0.00967	0.007570
DCP + Color + Noise	0.315961	0.562104	0.373782	0.000101	0.010030	0.008009

Original point sampling

- Training data generation
 - Source: Take N points
 - Target: Randomly apply rotation and translation
- **One-to-one** correspondence of point

Independent Sampling

Independent Sampling

Experiments: Independent Sampling

	53.342667	$\frac{1}{7.303607}$	4.438653	$\frac{\text{MSE}(\iota)}{0.048586}$	$\frac{\text{RMSE}(\boldsymbol{\iota})}{0.220422}$	$\frac{\mathrm{MAE}(\iota)}{0.077097}$
DCP + Independent Sampling	44.15807	6.645154	4.342775	0.030093	0.173474	0.067707

TUM RGBD	$MSE(\boldsymbol{R})$	$\mathrm{RMSE}(\boldsymbol{R})$	$MAE(\boldsymbol{R})$	$\mathrm{MSE}(t)$	$\mathrm{RMSE}(t)$	MAE(t)
DCP	390.456390	19.759970	11.853582	0.030235	0.173882	0.119560
DCP + Independent Sampling	256.066223	16.002069	10.963472	0.027706	0.166452	0.120926

ТΠ

ARAP Regularizer [Sorkine and Alexa, 2007]

- As-Rigid-As-Possible
- Punishes bad correspondences
- Neighbour distances should be preserved after transformation
- Additional loss

$$E\left(\mathcal{C}_{i},\mathcal{C}_{i}'\right) = \sum_{j\in\mathcal{N}(i)} \left\| \left(\mathbf{p}_{i}'-\mathbf{p}_{j}'\right) - \mathbf{R}\left(\mathbf{p}_{i}-\mathbf{p}_{j}\right) \right\|^{2}$$

Mixamo	$MSE(\boldsymbol{R})$	$\mathrm{RMSE}(\boldsymbol{R})$	$MAE(\boldsymbol{R})$	$\mathrm{MSE}(t)$	$\mathrm{RMSE}(t)$	MAE(t)
DCP	51.460548	7.173601	4.399128	0.043476	0.208509	0.075243
DCP + Arap	48.080051	6.933978	4.212567	0.050855	0.225510	0.076915

Mixamo	$\mathrm{MSE}(\boldsymbol{R})$	$\mathrm{RMSE}(\boldsymbol{R})$	$MAE(\boldsymbol{R})$	$\mathrm{MSE}(\boldsymbol{t})$	$\mathrm{RMSE}(t)$	$\mathrm{MAE}(t)$
DCP + Color	0.171919	0.414631,	0.106271	0.000035	0.004833	0.001755
DCP + Color + ARAP	0.171727	0.451673	0.083366	0.000044	0.006611	0.001589

TUM RGBD	$MSE(\boldsymbol{R})$	$\mathrm{RMSE}(\boldsymbol{R})$	$MAE(\boldsymbol{R})$	$\mathrm{MSE}(t)$	$\mathrm{RMSE}(t)$	MAE(t)
DCP + Color	0.240215	0.490117	0.334967	0.000094	0.009678	0.007570
DCP + Color + ARAP	0.169369	0.411545	0.270199	0.000075	0.008643	0.007129

Experiments: Final Results

TUM RGBD	$\mathrm{MSE}(\boldsymbol{R})$	$\mathrm{RMSE}(\boldsymbol{R})$	$\mathrm{MAE}(\boldsymbol{R})$	$\mathrm{MSE}(t)$	$\mathrm{RMSE}(t)$	MAE(t)
Original DCP	1.573519	1.254400	0.890428	0.000277	0.016652	0.01259
DCP + Color + ARAP	0.169369	0.411545	0.270199	0.000075	0.008643	0.007129

Conclusion & Future Work

• Conclusions:

- Color input has the biggest impact
- ARAP regularization slightly better, not a huge difference
- Harder to learn if source and target independently sampled

• Future Work:

- Can be made robust to lighting changes
- Training with noise
- Uniform sampling from mesh triangles for more even input points
- Improving the Mixamo dataset by adding more variation and characters, occlusions

References

- Yue Wang and Justin M. Solomon. Deep closest point: Learning representations for point cloud registration. CoRR, abs/1905.03304, 2019.
- Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.
- Zihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen, Oliver Van Kaick, Hao Zhang, and Hui Huang. Rpm-net. ACM Transactions on Graphics, 38(6):1–15, Nov 2019.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.
- J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of rgb-d slam systems. In Proc. of the International Conference on Intelligent Robot Systems (IROS), Oct. 2012.
- Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP '07, page 109–116, Goslar, DEU, 2007. Eurographics Association.
- Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue: Learning feature matching with graph neural networks, 2020.
- Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In Proceedings third international conference on 3-D digital imaging and modeling, pages 145–152. IEEE, 2001.
- Pranav Kadam, Min Zhang, Shan Liu, and C. C. Jay Kuo. R-pointhop: A green, accurate and unsupervised point cloud registration method, 2021. Christopher Choy, Wei Dong, and Vladlen Koltun. Deep global registration, 2020.
- Adobe. Mixamo model dataset, 2018.
- Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control paradigms and data structures, volume 1611, pages 586–606. International Society for Optics and Photonics, 1992.
- Theodore Papadopoulo and Manolis IA Lourakis. Estimating the Jacobian of the singular value decomposition: Theory and applications. In European Conference on Computer Vision, pages 554–570. Springer, 2000

Thank you for your attention [Bahdanau et al., 2014]!