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Motivation TUT

Deep learning methods can make wrong but
very confident predictions

motor scooter 0.§9 parachute 1.0 bobsled 1.0 parachute 0.54

fire truck 099 school bus 0.98  fireboat 0.98  bobsled 0.79
[Alcorn et al. 2018]
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Motivation

Deep learning methods can make wrong but
very confident predictions

Google apologizes for algorithm Tesla driver dies in first fatal crash while
. = . t . d
mistakenly calling black people using autopilot mode

] H I I ] The autopilot sensors on the Model S failed to distinguish a white
g oriias tractor-trailer crossing the highway against a bright sky

Image source [CNet, 2015] Image source [The Guardian, 2016]
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Motivation

e |Leveraging uncertainty information for 3D scene understanding is an

underexplored area
e Overconfident predictions can cause catastrophic consequences, it is critical in

real life scenarios to be aware of the uncertain situations.

e Train models that are able recognize when they are likely to make mistakes.
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Related Work: 3D Scene Understanding

e Deep Hough Voting for 3D Object Detection in Point Clouds [Qi et al, 2019]
e Mix3D: Out-of-Context Data Augmentation for 3D Scenes [Nekrasov et al, 2021]

e RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction[Nie

et al, 2021]

e TransformerFusion: Monocular RGB Scene Reconstruction using Transformers
[BoziC et al., 2021]
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Related Work: Uncertainty

Kerem Yildirir

Uncertainty

/

|

Epistemic
Uncertainty

|

Uncertainty of the model
Can be explained away with

more data

N

|

Aleatoric
Uncertainty

Uncertainty of the data,
usually inherent noise from
the sensor

Cannot be explained away
with more data



Related Work: Epistemic Uncertainty in Deep T
Learning

e |n order to capture epistemic uncertainty in a neural network, we put a prior distribution
(usually Gaussian) over its weights and instead of optimizing weights directly, we average
over all possible weights (marginalization) during inference, these models are referred as

Bayesian neural networks. [Kendall et al. 2017]
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Related Work: Bayesian Neural Networks (BNN) T

e Performing inference in BNN's is done by applying the Bayes’' Rule for evaluating the
posterior probability p(W | X, Y) — p(Y ’ X, W)p(W)/p(Y | X)
e Thisis nice to formulate, but often intractable to do in practice, because we need to

evaluate marginal probability p(Y|X) over all the parameters.

e Hence, in order to perform inference in BNN’'s we need to approximate true posterior.
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Related Work: Monte Carlo (MC) Dropout [3] T

e Existing approximation methods follow the strategy of defining a simple distribution that
fits into the posterior distribution, and then optimizing the simple distribution instead of
the true distribution [Kendall et al, 2017].

e [Gal et al. 2016] Has shown that performing dropout at test time is equivalent to
approximating the posterior distribution with a Gaussian which minimized the distance
between the distributions, and that we can easily compute the uncertainty of complex

and deep models without having to tackle an intractable problem.
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Related Work: Epistemic Uncertainty in
Classification

e Expected Entropy
o High when there's ambiguity in the decisions
o 1 ¢ W
- MC approximation: Expected Entropy ~ E Z(H(ft (x))
t=1

Kerem Yildirir

11



Related Work: Epistemic Uncertainty in
Classification

e Predictive Entropy

o Entropy of the expected prediction
o High when there's ambiguity
o High when the predictions far away from the data

e Mutual Information

o Mutual Information = Predictive Entropy - Expected Entropy
o Only high when far away from data
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Related Work: What Uncertainties Do We Need In TLTI
Bayesian Deep Learning for Computer Vision?

(a) Input Image (b) Ground Truth (c) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Image source [Kendall et al., 2017]
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Related Work: Neural RGB-D Sensing: Depth
and Uncertainty from a Video Camera

"]

Confidence 3D Recon. using 30 views

e Image source [Liu et al, 2019
Kerem Yildirir g [ ]

14



Related Work: Neural RGB-D Sensing: Depth T
and Uncertainty from a Video Camera
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Image source [Liu et al, 2019]
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Related Work: D3VO: Deep Depth, Deep Pose and"'m
Deep Uncertainty for Monocular Visual Odometry

Image source [Yang et al, 2020]
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Related Work: D3VO: Deep Depth, Deep Pose and TLTI
Deep Uncertainty for Monocular Visual Odometry

Kerem Yildirir Image source [Yang et al, 2020] 17



Related Work: Active Learning

Training on a labeled
set

Add new samples to the
training set
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Evaluate unlabeled data and
pick samples to annotate

Annotate the new samples
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Related Work: Learning Loss for Active Learning
[Yoo et al, 2019]

e Learning to predict what would the loss value be for an unlabeled input

e Selecting data where this prediction suggests that model is mistaken
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Related Work: Bayesian Active Learning by
Disagreement (BALD) [Houlsby et al, 2011]

e Sample the data with a Bayesian model

e Pick the samples with largest mutual information

e Add it to the dataset
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Related Work: BatchBALD: Efficient and Diverse T
Batch Acquisition for Deep Bayesian Active Learning
[Kirsch et al, 2019 |

BALD

e Similar to BALD, it is enforcing

batch-aware selections

BatchBALD

Image source [Kirsch et al, 2019]
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Method: Object Detection with VoteNet [QI et al, T
2019]

VoteNet
Voting in Point Clouds Object Proposal and Classification from Votes
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Image source [Qi et al, 2019]
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Method: Extending VoteNet

Original Proposal @ Conv1D
Module | Conv1D + Batch Norm
7 +RelLU
ay VA7 /)
Conv1D
Extended Proposal i ( @ ConviD + Batch N
Module j _,_%ZVLU EESIEEESS

) Dropout with p = 0.1

Kerem Yildirir



Method: Monte Carlo Dropout

Perform T forward
passes with
dropouts enabled
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Method: Monte Car

o Dropout

Perform T forward
passes with
dropouts enabled
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Method: Monte Carlo Dropout

Perform T forward
passes with
dropouts enabled
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Gather the MC samples
Compute epistemic uncertainty
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Method: Improving Detection Performance T

Use uncertainty as
a weight for the
proposal
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Results: Performance Boost in Detections
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Method: Active Learning

Labeled Train Set

Unlabeled data
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Method: Random Selection

Labeled Train Set

I

Unlabeled data

TUTI

Kerem Yildirir

=]

B

31



Method: Uncertainty Selection

Labeled Train Set
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Results: Active Learning
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Conclusion & Future Work

e FEven with simple techniques, we are able get visible improvements
e More complex uncertainty methods to be explored

e Aleatoric uncertainty in point clouds

e More advanced active learning schemes to be tried

e More complex weighting schemes can be tried

Kerem Yildirir

34



Appendix

Uncerainty Type mAP @0.25 mAP @ 0.5
Native 0.57087 0.3339318
Objectness 0.57647 0.3449952
Classification 0.5795556 0.3570348
Hybrid 0.5848642 0.3620454

Uncertainty Type AR @0.25 AR @ 0.5

Native 0.57087  0.4993466
Objectness 0.57647  0.5056164
Classification 0.5795556  0.5171316
Hybrid 0.5848642  0.5173844
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Appendix
Dropout probability mAP @ 0.25 mAP @ 0.5
p=0 37 35
p=0.1 375 34.5
p=0.2 b % Foo 30
p=0.3 51 23
p=0.5 46 15
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