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1. EXECUTIVE SUMMARY 

Detection of plant diseases via computer vision based systems are being used to identify plant               

diseases promptly, to prevent the spread of the disease. In this work, we present a system for                 

classifying plant diseases from photographs of the diseased parts of the plant. The system is               

trained using transfer learning on convolutional neural networks (VGGNet) which are trained to             

classify 38 plant diseases or 11 disease classes. 

95.09% average accuracy was obtained on plant-disease classification using PlantVillage dataset.           

On the other hand, 96.27% average accuracy was obtained for disease classification instead of              

plant-disease classification. VGGNet obtained these scores. 

Another main focus of the first part of the project was to implement a web application, using a                  

user interface to make the querying of plant images and getting the results of the disease                

detection system more user-friendly. We have set up a server in the school network, coupled               

with a database, which would take queries from users and return the results from our detection                

system.  

Other plans regarding this web application include the gathering of extra data through the user               

interface and adding the query data, if they are suitable, to the already existing dataset so that the                  

system can be trained further and better results can be achieved in the future. This integration                

would also make it possible for the system to be improved continuously.  

The second part of the project was to integrate the software with an autonomous drone. The                

objective of the drone would be to scan the field in sufficient time and take close up pictures of                   

the crops. The software would analyze these images and try to classify healthy and sick plants.                
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With the help of the GPS integrated into the drone, the images classified with plant disease                

would be saved with the corresponding GPS coordinates and their location would be shown on a                

map to the user. 

 

2. PROBLEM STATEMENT 

 

The main objective of this project was to be able to develop a machine learning system which                 

could detect, by using an image of the plant, if the said plant had a disease or if the plant was                     

healthy. Detection of a plant using a machine learning system is already a complex task, which                

makes detecting a disease, notice that each plant may have many different and similar diseases               

compared to other ones, an even more complicated task. The amount of classification that needs               

to be done is immense when the aim is to classify a lot of plants and their diseases.  

In the literature, there have already been machine learning methods developed that was             

successful in this task. We adopted the approaches from several research papers and             

implemented them in our own while adapting the work to fit our needs.  

Our primary motivation in this project was to help the automation of agricultural processes. This               

automation would further develop the methods to grow and produce food more efficiently, which              

would pave the way to feeding the rapidly increasing population.  
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2.1. Objectives/Tasks 

● Data Collection & Augmentation: ​Since Plant-Disease classification is not a very hot            

topic as Plant Identification and Face Identification in terms of Computer Vision based             

Deep Learning methods, finding large image datasets containing plant-disease labels are           

relatively harder. Therefore, data augmentation stands out as a fundamental objective.           

Nevertheless, the main objective in terms of data is to find a reliable data source either                

from external data sources or contribute to the creation of such a database. 

● Model Selection: ​While selecting the classification model for our system, we took            

insights from [3, 5], which were winners of ImageNet Large-Scale Visual Recognition            

Challenge (ILSVRC), which was a competition on ImageNet dataset. The data set            

consisted of 22,000 labels, hand labeled by Amazon. The VGG16 model was a winner of               

this challenge, and we adapted the model structure to our problem and used it for the                

disease classification since the complexity of our problem was also a very high one. 

● Classification Classes: ​As mentioned previously, finding a large amount of data for            

plant-disease recognition is a difficult task. For this reason, tuning classification classes            

become a critical choice. Additionally, choosing classification classes is one of the new             

approaches that we have decided to use over [3, 5], in which we have decided to build                 

half of our models only for disease identification (11 classes), and rest of the models for                

plant-disease identification(38 classes). Applying only disease detection to some models          

shines out as an essential objective. 

● Integration with User Interface: ​As soon as models are developed and their testing is              

completed, most accurate model among all of them should be integrated with the User              
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Interface for the Plant-Disease Application. Learning and using Flask Restful API for a             

reliable, decent, and successful integration process has the utmost importance. 

● Choosing a vehicle​: To make the crop disease detection work faster, a solution would be               

to use a vehicle to travel through and scan the crop field. We have decided to use a drone                   

for several reasons: 

○ It is much more comfortable to travel through the air than to move on the dirt                

since the ground level in the field might not be uniform and a ground vehicle may                

get stuck in the dirt due to an obstacle or merely losing traction due to the mud.                 

Thus a drone will be able to move much faster in the air than a ground vehicle                 

moving through the field. 

○ The distance to the crop can be controlled with a drone. Since we need to take                

pictures of the plants in the field, the leaves or fruits may be located higher for                

some plants than others. With a ground vehicle, the distance to these cases cannot              

be controlled where a drone can move in 3 dimensions to get close enough to the                

plant for a clean image. 

○ When taking the images, the vibrations in the environment will affect the quality             

of the images. Ground vehicles will be induced to vibrations due to the shape of               

the tires and the shape of the uneven ground. These vibrations and disturbances             

will require correction for the camera orientation and vibration cancellation. A           

drone, however, is more stable in the air and can be equipped with a 3 or more                 

DoF (Degree of Freedom) gimble to keep the orientation stable and reduce            

vibrations. 
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After considering these reasons, we decided to use a quadcopter/drone for our project             

implementation. The drone could be constructed and programmed by ourselves or could            

be bought as a consumer-ready product where no programming is needed / possible. The              

selected drone is a consumer-ready device, which is a DJI Phantom 3 SE[2]. 

● Achieving Autonomous Motion: ​Since the main idea of this project is to automate             

disease detection in crops, the next step would be to use a vehicle autonomously. Our               

first solution was to use the SLAM (Simultaneous Locating and Mapping)[1] algorithm            

to achieve autonomous flight. The algorithm will be explained in the Methodology            

section. After inspecting the complexity and the requirements for this method, we            

decided to implement this task in a different way using GPS navigation with the help of a                 

3rd party software. This software will be explained below, as well. By choosing to use a                

3rd party software, we can use a consumer drone which is ready to use, and no                

programming is needed. This will not have been the case if we have used the SLAM[1]                

algorithm, since we would have to construct and program our drone, consuming more             

time and resources. 

 

● Integrating the classifier with the selected vehicle: ​A decision had to be made whether              

the vehicle would perform the classification in real time or after the scanning is complete.               

Since we decided to use a consumer product to use a 3rd party GPS navigation software                

as stated above, we were unable to create a real-time system. This way, we implemented               

our system in a way that, the drone performs a flight above the field while taking pictures                 

/video. After the flight, the video or images are extracted from the drone, together with               
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the GPS data which can be extracted with a software[3] provided by DJI. The extracted               

images are overlapped with the GPS data so we can approximately know where the drone               

was when this picture was taken. After the images are fed through the classifier, the               

detected diseases are prompted with their given GPS locations and are shown on the map.               

*last part not completed yet test flight to be performed. 

 

2.2. Realistic Constraints 

One of our main constraints is to find plant-disease data to enhance our plant disease               

identification model. As we already mentioned, there are many different methods to obtain data.              

However, collecting plant disease images is not an easy job, since capturing a specific plant with                

a specific disease will probably not occur at the requested time. Geographical conditions play a               

huge role, as well. Therefore, relying on creating a plant-disease image database would not be a                

realistic goal, but contributing to its creation would benefit the plant-disease identification            

process. Exterior data owners are not reliable sources as well, because they may not share their                

data because of private reasons. Therefore, we are limited to public datasets, Google Images[6].              

Another constraint is that Google Images[6] not being a decent plant-disease image data             

provider, the amount of dirty data is enormous. Unfortunately, there are few public datasets for               

plant-disease identification. 

As a consequence of these constraints, the combination of the above methods(Public datasets,             

Google Images[6], Exterior Data Owners, and Self-taken images) would benefit at most.            

Otherwise, the amount of data would be insufficient. Lastly, the usage of drones are among the                
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best methods to create and contribute to a plant-disease database. However, there are some              

constraints for drones, following part provides insight about these constraints. 

To contribute to plant disease database efficiently, we have decided to use a drone together with                

a camera. For this process to work, the camera must capture the plants in high quality and                 

without motion blur. This requires a high-quality camera. Another problem with the camera is              

the weight. The extra weight of the camera can cause the drone to draw more current from its                  

battery and decrease the flight time or even worse, can result in the drone being unable to fly.                  

Apart from the physical issues, the Turkish Government has restrictions on drones. According to              

the Civil Aviation laws [4], if the weight of the drone is over 500 grams, it must be registered,                   

and a permit is needed before every flight. This will make the inspection much more difficult. So                 

According to these constraints, the camera must be compact, low weight, and be able to capture                

high-resolution images. 

 

Computational power to build up deep learning systems stands out as another realistic constraint.              

Although deep learning systems do not require high-performance machines, it is crucial to use              

high-performance clusters to train models more efficiently and faster. Unfortunately, our local            

computers do not provide high processing powers in terms of Graphical Processing            

Units(GPUs). Therefore, finding alternative high-performance sources becomes a necessity.         

Google provides its computational power sources, Tesla K80 GPUs, to the public through             

Google Colab freely. However, these GPUs cannot be utilized by 100%. For this reason, model               

training does not achieve maximum efficiency. As a consequence, Google Colab should be used              

if high-performance alternatives cannot be afforded, or High-Performance Clusters should be           
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taken into consideration. We were provided with High-Performance Clusters, though our first set             

of model training was done on Google Colab as HPC were not initially ensured. 

3. METHODOLOGY 

3.1 DATA COLLECTION & AUGMENTATION 

 

In the previous part, we already mentioned the realistic constraints of the project, in which               

gathering a sufficient amount of useful data is not an easy task. Fortunately, Plant Village dataset                

was found as an exterior public dataset.  

PlantVillage data set consists of 54.305 images from 14 different plant species. There is a total of                 

38 disease-plant pairs(for example apple rust ) in the data set. A slice of the data set is shown in                    

the figure below. We split 20% of this data set for testing and did our training using the VGG16                   

network. Dealing with an insufficient amount of data was the most problematic part of this               

project.  
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Figure 1 demonstrates a distinct part of the Plant Village dataset, where each column represents a                

different plant, namely from left to right: apple, cherry, grape, corn, pepper, tomato, strawberry,              

peach. However, this only a tiny part of Plant Village Dataset. 

To build a successful deep learning system, it is required to train the system with a large amount                  

of data. Although 54.305 images seem like a large amount of data, it is not sufficient to build a                   

realistic model that can identify plant-disease labels. Nevertheless, establishing an accurate deep            

learning system with the data at hand would still yield a successful model. In future works, with                 

more data, our core deep learning systems could be chosen as the first checkpoint and further                

improved. However, again for a valid core deep learning system, a sufficient amount of training               

data is required. 

As a consequence, we have decided to use data augmentation, in which on fly augmentation was                

used. In other words, augmentation was applied during the training process. Besides, basic             

augmentation methods such as shifting, rotation, and translation were applied to Plant Village             

images using Tensorflow and Keras. 
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3.2 CONVOLUTIONAL NEURAL NETWORKS 

3.2.1 VGG-16 

 

    

In this work, we used deep learning, a method which became popular in recent years due to the                  

increase in the amount of data and computation power. Deep learning is primarily used in               

computer vision problems such as classification and object recognition. There are also annual             

challenges for deep learning applications where people from different universities compete for            

the best classification model. One of those competitions, ImageNet, is a challenge for object              

recognition, and it is one of the most famous challenges. We thought that the problem in the                 

challenge is similar to our problem and decided to finetune VGG-16, one of the deep learning                

architectures which performed well in the ImageNet challenge. To finetune the VGG16            

architecture(can be seen below), we replaced the last fully connected layer with another fully              
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connected layer with 38 units and softmax activation in case 1 and a fully connected layer with                 

11 units with softmax activation in case 2. We trained these last layers from scratch, while we                 

froze the other layers so that the number of trainable parameters kept at a minimum as we do not                   

have much computing power. We used 20% of our training data for validation and used it as the                  

early stopping technique through 100 epochs. Figure 2 depicts the general structure of the              

VGG-16 model, and Figure 3 demonstrates the logical structure of VGG-16 model. 
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3.3 DRONE  INTEGRATION 

3.3.1 SLAM 

SLAM is an algorithm that allows a mobile robot/vehicle to create a map of its environment and                 

calculate its position and orientation according to this map simultaneously. It does this with the               

combination of many onboard sensors such as accelerometers, sonar sensors, lidar sensors,            

gyroscopes, and most importantly, stereo cameras. This is a very complicated process since it              

only uses its sensors that are on the drone, and all the data that is processed includes noise. As                   

stated above in the objectives section, such an algorithm has to be implemented on a self-made                

drone, and this was out of the scope of our project. Due to these reasons, as explained above, a                   

consumer-ready drone with GPS position control was selected. 

 

3.3.2 DJI Phantom 3 SE 

As stated above in the objectives section, we have decided to use ​DJI Phantom 3 SE​. The                 

technical specs of the drone: 

● Take off weight of 1.1236 kg 

● Max horizontal speed of 16 m/s 

● Hover accuracy range of ±0.5 m (vertical), ±1.5 m (horizontal) GPS positioning 

● Max hovering time of 25 minutes 

● Max service ceiling of 6000 m above sea level 

● 3 axis camera stabilization 
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● Electronic shutter speed of 8-1/8000 seconds 

● Image size of 4000x3000 pixels 

● FOV 94 degree 20mm f/2.8 focus at ∞  lens 

● Live video quality of 720p with 30 fps 

 

 

3.3.3 GPS Availability 

The drone records it's flight data on to its internal storage and can be received by using the DJI                   

GO app and entering into Flight Data Mode [5]. By connecting the drone to a PC, the log files of                    

all previous flights will be available. After extracting the flight logs, the log viewer website[3] is                

used to extract the GPS coordinates in CSV format. 

 

3.3.4 Fixed Height and Route 

The third party software Litchi[6] is a third party autonomous flight app and is compatible with                

DJI Phantom 3 SE. The app has a mission planner that allows the user to enter a path,                  

orientation, speed, camera angle, and altitude that the drone will follow during the mission. The               

waypoints for the mission can be set from the app or the website[6] since it uses images from                  

Google Earth, we can visually see the landmarks that will make the planning easier. For our                

problem, we created waypoints across the crop field and gave the drone a fixed altitude and a                 

fixed gimbal orientation with the desired speed. During the flight we can observe the live camera                

feedback from a tablet or smartphone in case something went wrong. 
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3.3.5 Approximating Area Covered per Flight and Timing 

As stated above, the DJI Phantom 3 SE has a FOV of 94 degrees. If the drone camera is oriented                    

normal to the ground and the drone is flying at altitude h meters relative to the ground, the size                   

covered by a frame of the video will be approximately 2h meters wide. 

 

We can approximate the area covered by the frame as a circle with radius h or a square with each                    

side being 2h meters. If we go with the second approximation, a single frame will cover an area                  

of 4h2m2. Assuming a single plant in the field covers around 1m2 and is positioned in the center                  

of the image, the drone would need to fly at least 1m above the ground, which is too low. If the                     

drone flies 2m above the ground, the plant will cover approximately 1/16'th of the frame, and the                 

drone will have less probability to collide with objects. Since the drone uses GPS for vertical                

positioning and has a ±0.5m error rate, the optimal height for the drone will approximately be                

2.5-3m. The height has been tuned during the test flight. 
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Assuming each frame will cover 4h2m2 of area, with non-overlapping frames, the drone can              

scan the field in a column-row wise manner. Assuming a square field with Lm sides and each                 

pass over the field will cover L/5 * 25=5Lm2 where each non-overlapping frame covers ~25m2               

flying at 2.5m. In total, the mission will require L/5 pass-by's each covering 5Lm2 of area. 

For a field with 104m2 area, the drone will have to do 20 passes if we assume the frames are                    

non-overlapping. With overlapping frames, the number of passes will increase, and the same             

plant will be captured multiple time, which can increase the accuracy of the disease being               

detected since a different angle is introduced. However, since the drone will be recording a               

video, ~30fps (can be set up to 60fps)will be the standard. The video can be processed into                 

frames after the flight. 
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A field of 50x50m2 with each plant covering 1m2.  

 

 

The flight time of the drone is limited to 25 minutes, so the velocity of the drone must be                   

adjusted. We need to be fast enough for the battery, but we also need to be slow to obtain clear                    

footage. If the drone is flying with a constant 2m/s velocity, it will take 50s for a single pass and                    

4 passes to entirely cover the entire field, assuming the field is 100x100m2. Thus with a                

relatively slow velocity, we can cover a hectare in ~5 minutes. Which means the battery will last                 

for most of our missions. The velocity of the drone can be lowered to get more clear images if                   

necessary. It can be lowered as low as 0.3m/s to cover a hectare field in under 25 minutes. 
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3.4 USER INTERFACE WITH REST API  

One of the primary purposes of the project was to ensure a useful interface for Plant Disease                 

Detection system. As there already existed Plant Identification User Interface belonging to            

Sabancı University, the best idea was to extend this User Interface with Plant Disease              

Identification optionality. Accessibility to both Plant Identification feature and Plant Disease           

Identification feature would, therefore, be more practical and reasonable.  

Flask-Restful API was used to integrate the Plant Disease model with an already existing              

interface. When an image is entered, the model predicts plant-disease label of the given image by                

accessing image through SQL database. After an image is uploaded to the website, it is directly                

sent to the SQL database. With the help of SQL queries, model accesses given image and                

predicts the corresponding label. Prediction is printed out on the website.

 

3.5 USAGE OF GOOGLE COLAB  

Google Colab was used as a working environment to create Plant Disease models. By free GPU                

usage provided by Google Colab, models were trained relatively faster in comparison to training              

with CPU’s. Also, Jupyter environment provided by Colab assisted us to build our models              

separately without losing the modularity of the code as different model training only required              

working with different code blocks. Executing non-relative blocks were avoided. Lastly, steps, as             

downloading data or importing libraries, were done only once, since they were distinct code              

blocks. Therefore training and testing models gained momentum in comparison to using Python             

with non Jupyter environment.  
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4. RESULTS & DISCUSSION 

 

As mentioned in previous sections, we did build four VGG-16 models with different             

characteristics, to be more specific, we trained our first two models to detect only diseases but                

not both plant-disease labels. Therefore, these two models were trained only for 11 classes, and               

11-node softmax layer was used to enable classification. Other two models were built for              

plant-disease classification, namely 38-node softmax layers for classification. Lastly, the          

difference between models having the same classification tasks was their trainable layer amount.             

Two of these models, one from 11-class and other from 38-class, were changed, such that their                

fully connected layers were extracted and three-layer from their remaining layers were enabled             

for training. In other words, transfer learning was applied, and layers. Other two models were the                

same, only that their last single layers were enabled for training. All of these models were trained                 

for 100 epochs, and most accurate model was the 11-class model with 3-trainable layers. Our               

accuracy obtained by this 11-class model was 96.27%, and our best accuracy obtained by              

38-class models was 95.09%. 

 

Considering two models that were built for 11 classes, highest and lowest F1-scores achieved              

were 99.53% and 89.95% (96.64% on average) on the basis of classes. Highest and lowest               

accuracy values resulted as 100% and 88.50%. Lowest accuracy value (88.50%) belonged to             

mold disease, however mold image dataset consists of very few images and for this reason, we                
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believe that F1 and accuracy scores for mold can be increased through a greater image               

database.On the other hand, highest and lowest F1-scores achieved by 38-class models were             

99.77%  and 81.40% (94.79% on average). 

Loss and sparse categorical accuracy graphs of the most accurate model, 11 class model with the                

last three layers trainable, are depicted below in Figure 7 and Figure 8. Until 20 epochs, a                 

decrease in loss value and an increase in accuracy indicates around 20 epochs are required for                

decent training. To avoid overfitting, we have used our validation set such that after every epoch                

validation set was tested. Only if validation accuracy was higher than the previously saved              

accuracy value, then these new epoch results were stored. For the rest of the epochs, their                

changes in later weights were not stored. 
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We have achieved our initial expectations, as our models have achieved decent F1 and Accuracy               

scores. We used the state of the art technology to develop these models such as Tensorflow and                 

Keras. Besides, we believe that our models contributed to theses state-of-art technologies and             

agricultural laborers themselves. Even our contributions are not yet a factor of influence. We              

believe that in the near future they have a high chance to be guidance to similar works. 

The drone integration part is still ongoing, and a test flight will be performed soon. Since the test                  

flight will be performed on a garden rather than a crop field, we do not expect correct                 

classification because the plants located in the garden are not included in the training set. Thus                

the test flight will be focusing on the autonomous flight, mission planning, optimal flight              

velocity, optimal hovering height, optimal camera gimble orientation, data extraction, and           

processing. 
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5. IMPACT 

We believe that our research product can be implemented in a mobile application which could be                

used by farmers and agricultural engineers for disease identification. Given sufficient data, we             

believe that our research product can be implemented in a mobile application which could be               

used by farmers and agricultural engineers for disease identification. Given sufficient data, we             

believe that our research product can be implemented in a mobile application which could be               

used by farmers and agricultural engineers for disease identification. Given sufficient data, we             

believe that our research product can be implemented in a mobile application which could be               

used by farmers and agricultural engineers for disease identification. Given sufficient data, it is              

possible to train better models with more accuracy in the field. The current version is constrained                

by the small amount of lab-only data. Hence for it to be used in the field, we need more data. 

6. ETHICAL ISSUES 

There are no ethical issues regarding this project. 

7. PROJECT MANAGEMENT 

We started by collecting data from google images as we were unable to gather relevant data                

immediately for our project. However, the data we have gathered was not nearly enough to train                

our models. Hence we decided to use a dataset from a challenge in this domain. We continued                 

our project with the implementation of a paper which used our dataset and gathered good results.                

After successfully training the model and getting similar results to the paper[5] we moved to the                

drone integration. We are currently in the phase of collecting data with the drone, and we plan to                  

use this data further training and improvement. 
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8. CONCLUSION AND FUTURE WORK 

As a result of this project, we have developed a machine learning application for potential use in                 

agricultural automation. We plan to develop it further such that it is easily accessible and               

beneficial to farmers and agricultural engineers. Our work on the drone is still ongoing, and we                

aim to complete the integration as the final step. Future work that could be done on top of this                   

project is evident. If given more and accurate data, there is much room for improvement in the                 

model training.  
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