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Abstract

Semantic scene understanding is crucial aspect of modern day robotic applications. With
the recent advances in deep learning and the increased availability of large scale richly
annotated datasets, popularity of 3D scene understanding tasks has increased rapidly.

In this work, we present a probabilistic hybrid solution with point-based and volu-
metric components to jointly localize, classify and complete the object instances given a
single RGB-D frame. Our reconstructions are not restricted by the camera field of view,
and aims to complete the object geometry even outside the camera frustum where the
input signal is significantly weaker compared to the rest of the scene.

Our probabilistic detection approach aims to combat ambiguous scenarios where
objects in the scene have weak representation, and multiple completions are plausible
for an object. We show that instead of outputting directly regressed bounding boxes,
learning a distribution of bounding boxes can help us generate alternative suggestions for
every detection proposal, which improves both detection and completion performance
when utilized.
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1 Introduction

In the last years following the emergence of multiple of large-scale 3D datasets, semantic
scene reconstruction has gained significant momentum in the research community. The
task focuses on recovering semantic classes, geometry and object poses from partial
inputs signals (3D scans or images). Although existing methods for reconstruction from
monocular images benefit from the significant progress of 2D CNN’s and are able to
achieve plausible results, they still face the main bottleneck of depth ambiguity. [1],[2],[3]
[4]. Another type of input, real world 3D scans, are also problematic, as they often
include imperfect or missing, geometry due to various factors such as occlusions and
bad illumination. Existing works have explored many different strategies to address
these imperfections and recover the missing geometric features, [5] used TSDF(truncated
signed distance field) grids of the whole scene and completed the missing geometric
attributes of objects to assist with object localization, [6] leveraged the sparse and
compact nature of point clouds to operate in high resolution and both detect and
complete 3D objects from scenes with missing geometry. Retrieval methods like [7][8][9]
reformulated the problem as a matching problem and for each detected entity, aimed to
retrieve and align a CAD model from a predefined database. [10] united the tasks of
scene completion and semantic segmentation, and proposed semantic scene completion
(SSC), the task of jointly estimating both scene geometry and semantic information of a
scene from a given sparse partial input, a single depth frame.

In this work, we tackle the task Semantic Instance Completion (SIC), which is slightly
different from SSC in the sense that instead of semantically segmenting the whole scene,
it only focuses on the object instances in the scene with background classes such as
wall, ceiling and floor are ignored. Object localization is required to identify regions
of interest and recover missing geometry in a per-instance basis, SSC, on the other
hand treats all instances of the objects belonging to the same semantic class the same
and complete the scene as a whole. Both tasks show significant relevance in real life
scenarios where semantic understanding of the scene is crucial, such as robot navigation
and interior design. The choice of which problem to tackle depends on the constraints
enforced by the application. To give an example in the robotics domain, imagine an
agent is deployed in an environment where it needs to analyze and interact with the
scene. While for some cases it is enough for the agent to perceive the object classes in
the scene, another scenario where further interaction with the scene is needed might
require additional information such as how many instances of an object exists in the
scene, or with which instance the agent is currently interacting.

We take inspiration from the single depth frame setting, and formulate the SIC
problem as localizing, classifying and completing all the object instances represented
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1 Introduction

in a single depth frame, while also extending the completion scope beyond the camera
field of view. To our knowledge, existing methods have formulated this task to perform
completion and classification only in the camera field of view. This extension brings
additional ambiguity to the task, especially for the objects that lie mainly outside the
camera frustum, where multiple pose, geometry and classification possibilities become
plausible due to lack of information from the data.

Deterministic methods tend to suffer from environments with high uncertainty, and
deep learning methods are not an exception, and they have been shown to be often over-
confident in their predictions [11] which could potentially lead to troubling outcomes.
To address this issue, recent methods introduced uncertainty quantification in their deep
neural networks, and by leveraging the quantified information, improved their dedicated
tasks. Uncertainty quantification not only improves performance in the tasks of semantic
classification and depth estimation [12], but also provides a strong signal on when the
model is performing poorly, and can be used for weighting during optimization to
penalize noisy residuals, making the model more robust to noisy environments [13]
[2][1].

To this end, we present a probabilistic hybrid framework for semantic instance
completion from a single RGB-D frame, utilizing both point cloud and voxel grid
representations for 3D scenes. Our method is capable of detecting and classifying object
instances in the scene, while recovering the missing geometry globally from both inside
and outside the camera frustum. We also show that due to the probabilistic nature of
our method, we are able to generate multiple plausible detection and reconstructions
per proposal, and we show that utilizing multiple suggestions lead to better localization
and completion, especially when objects are underrepresented in the input.

The rest of the thesis is structured like the following:
Chapter 2 gives an overview of the existing 3D representations, followed by a brief

review of 3D Object Detection, SSC and SIC approaches and concludes with a recap on
uncertainty quantification in computer vision problems.

Chapter 3 presents our proposed method and the main ideas behind it, and describes
how our framework operates in practice.

Chapter 4 provides our implementation details, qualitative and quantitative results of
our method, comparison with our SSC baseline, followed by an analysis of our method
under different constraints.

Chapter 5 concludes this work by summarizing our contributions and potential future
improvements.
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2 Related Work

In this chapter, we give a brief history of the developments in the relevant areas
to our work. We introduce some of the popular 3D data representations, followed
by methods for 3D object detection, semantic scene and instance completion, and
uncertainty quantification in computer vision.

2.1 3D Data Representations

While for humans it is trivial to perceive our surroundings and perform complex
analysis in the environment, replicating these tasks with computers require proper
representation of the captured 3D space. Accurately representing 3D is a challenging
task, and many different representations have been used to encode 3D data for many
tasks. For applications that require semantic scene understanding, the most popular
representations are point clouds and volumetric grids.

Point clouds are unordered set of points in the euclidean space, with optionally
other attributes than position, and volumetric grids are the intuitive extension of a 2D
image to 3D. The space is partitioned with 3D unit cells which are named voxels, to the
desired resolution and every cell encodes information about the 3D unit volume it is
representing, this information can simply be occupancy, or in the more sophisticated
scenario where the scene is encoded as an implicit surface, a distance field, it can contain
the distance to the surface in the scene, which provides rich information for processing.
Volumetric representations have the regular grid structure with efficient neighbor access,
which is beneficial for feature extraction using 3D convolutional nerual networks (CNN).
However these benefits come with the cost of heavy memory usage and computation
requirements, as the grid size grows cubicly with the resolution. Point clouds do not
offer any regular structure and efficient neighbor access, but are much more lightweight
and less demanding in terms of resources. Since 3D convolutions cannot be directly
applied to point clouds, classical methods for handcrafted features ??, or more recently,
deep neural networks such as [14] are used to extract per-point features from the point
cloud, which led to many deep learning based methods utilizing point clouds for
many different tasks, ranging from object detection [15], semantic segmentation [14],
classification etc.

In the context of this thesis, we examine methods utilizing both representations, as
our method makes use of both point clouds and TSDF grids.
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2 Related Work

2.2 3D Object Detection

Object detection is the task of localizing object instances in a given an input signal. For
the case of 2D, the signal comes from the image domain, and although it lacks the depth
information, encodes dense information about the scene and its semantic properties, and
modern methods like [16] are robust and accurate enough to be deployed at commercial
autonomous driving systems. For the case of 3D, the input signal often comes from
point clouds or volumetric grids, and with the increasing popularity of the field and
richly annotated synthetic [17] and real world datasets [18] [19], many approaches for
object detection emerged over the years.

Inspired by the success of 2D methods, some earlier works on 3D object detection
leveraged RGB-D images in their pipeline. [20] proposed regions in 2D, then lifted them
to 3D, then using the points from the depth point cloud inside the proposed region,
used PointNet for further processing. Following this work, [21] used 2D CNNs for
feature extraction, backprojected the extracted 2D features into 3D grids, performed
semantic instance segmentation with a 3D CNN architecture. Taking it a step further,
[5] encoded the RGB-D scans as TSDFs to be coupled with color information from the
RGB images, and proposed a fully convolutional 3D architecture for both predicting
missing object geometry and localizing objects in the scene. However, these methods
had to be restricted to low resolution, because of the large memory requirements of
volumetric methods. Overcoming this bottleneck, [15] presented a robust approach
which utilizes only geometric features from point clouds, yet still outperformed the
state of the art detection algorithms in indoor scenes, and following works continued to
use the point cloud representation for object detection, driving state of the art further.
Recent works using only RGB images show promising results [22], but suffer from the
depth ambiguity to predict accurate bounding boxes in 3D space. In this work, we
choose the point based VoteNet [15] architecture as our detection backbone and build
our framework on top of its foundations.

2.3 Semantic Scene Completion

Semantic Scene Completion (SSC) is the task of jointly estimating scene geometry and
semantic class information from a partial sparse input. The two tasks were treated
independent until it is proposed by [10] that they can be jointly tackled and are beneficial
to each other and proposed a 3D CNN architecture to perform this task from a single
depth frame. Inferring a dense scene with partial input is an ill posed problem, since the
input does not contain enough information to recover all missing characteristics of the
scene. Most of the existing methods rely on deep learning, and benefit from different 3d
representations and architecture types. In the scope of this thesis, we will constrain this
section to describing some of the recent approaches and representations, for a more in
depth explanation of the problem and existing approaches, we refer the reader to [23].

Majority of the existing methods rely on 3D grid based representations for this task,
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as it is convenient to represent the scene as a binary occupancy grid or an implicit
surface representation such as truncated signed distance fields, and its variants[24]
[25] . In this work, we use a completion backbone which works with TSDF grids, as
they encode richer information about the contextual state of the scene, which we belive
is necessary for our ambiguous problem setting. Following the initial work of [10],
following methods approached the task from various perspectives. [26] and [27] aimed
to reduce the computation on dense voxel grids, [28] proposed a coarse to fine approach
for refining geometric details. Other methods utitilize RGB images as a complementary
input to the depth, and aimed to fuse the two feautures together. We make use of the
3D-Sketch architecture by [29] which instead of implicitly encoding the information in
a feature space proposes an explicit geometric embedding of the scene, and together
with the RGB image features, guides the process of reconstruction and classification
of the input scene. Some of the existing works also show promising results by only
using RGB images [3], they are unable to compete with the geometrical approaches, as
they use even less information for the task. Following the existing work, we adapt the
single RGB-D input setting, but different than existing methods, we define our task as
retrieving the complete global object geometry, regardless of the completed area being
inside camera field of view or not. Hence the end goal of our method falls under the
task of semantic instance completion rather than semantic scene completion.

2.4 Semantic Instance Completion

Semantic Instance Completion (SIC) focuses on classifying, localizing and completing
all the object instances in the scene. In the context of this thesis, we define our “scene”
as a single depth frame, where the existing approaches make use of the whole indoor
scene scan as their inputs.

Existing work on SIC rely on instance segmentation or object detection to localize
the object, typically, generating annotated ground truth data per 3D object instance is
very expensive, and to often infeasable to put into motion. Some methods approach
the completion problem as retrieval, and after locating the objects, align a matching
CAD model from the database to the objects, leading to a clean CAD model of the scene.
[9][7]. Other methods including ours use a completion module to isolate the region
inside the localized area and recover missing geometry in the designated region. Also,
more recent approaches attempt to perform multiple object detection and completion
from single RGB frames.[30][3]

From the existing works RfD-Net by [6] shows strong resemblance to our problem,
as they jointly detect and complete object geometries from directly from point clouds
in an end-to-end fashion. They follow the work of [5], which hallucinates the missing
geometry in the scene and uses it to enhance detection performance. Although end goal
is quite similar, both of these methods operate on a different setting from our pipeline.
They benefit from the whole 3D scan of the scene while we restrict ourselves to a single
RGB-D frame, carrying a much weaker input signal.
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2.5 Uncertainty quantification in computer vision

Deep learning models need to be robust against ambiguous input or unseen data,
however this is rarely the case. This is only natural, as the data the model trained with
has a big impact on how that model performs under real world circumstances, and it
is infeasible to include every single variation of a task in a dataset. As deep learning
methods continue to improve and outperform and replace classical methods in computer
vision, their roles in real life applications are becoming more and more important. In
the context of computer vision, there is already a variety of existing deep learning based
solutions for problems such as object detection, classification, autonomous driving,
depth estimation are getting integrated into our lives.

With the increasing use cases in real life, the need of uncertainty quantification
becomes more imminent. The deployed models should be able to distinguish when their
predictions become less reliable and invoke the necessary action accordingly, rather than
being overconfident about them. To give an example, let us imagine an autonomous
driving scenario where the 3d surroundings are identified through images. If a vehicle
has unusual color or material, which affect the way its perceived by the camera, it could
lead into faulty detections. Assuming the model is not trained for scenarios like this,
the desirable situation would be notifying the driver to take action in regarding this
lack of confidence in model predictions. If this issue is not addressed, it could lead
to catastrophic outcomes. Uncertainty quantification in statistical modeling is not a
newly addressed problem, existing work investigate and capture the uncertainty in
many tasks in classical methods [31], however it is still yet to become a standard in
modern computer vision applications.

For the case of computer vision and deep learning, the work of [12] investigate the
types of uncertainty and how to capture them in deep learning methods for popular
tasks and provide a practical approach to enable any deep neural network to capture
the uncertainty, which was deemed as infeasible before. In their work, the uncertainty
is quantified under two categories, aleatoric uncertainty and epistemic uncertainty.
Epistemic uncertainty is the uncertainty of the model parameters, and can be reduced
with more data usage. It is useful for detecting out of distribution inputs and it is
also beneficial as a selection criteria in active learning scenarios to select the most
informative fractions of the data include in the training set. Aleatoric uncertainty is
the uncertainty present inherently in the data and stems from the nature of the input,
which cannot be explained away with more data, and is useful to capture in regression
tasks for robustness. One can model it in a homoscedastic fashion where constant noise
is assumed over the whole data, or in a heteroscedastic fashion, where the learned
uncertainty is modeled as a function of the data, and varies from input to input.

Existing works demonstrate that captured aleatoric uncertainty can be used for robust
optimization against noisy input, [2][13], or as a refinement criteria for object detection
[32]. Capturing aleatoric uncertainty is typically done by assuming the data comes
from Gaussian distribution, and adding a head to the network to estimate the variance
of the distribution input data is coming from. The predicted variance is supervised
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using a Gaussian Negative Log Likelihood loss function, as suggested by [12]. In our
proposed method, we employ this strategy to learn the distributions for object sizes
and centers, but instead of using the predicted values as weighting factors, we use the
learned distribution to generate multiple suggestions.
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3 Method Overview

In this chapter we introduce our problem statement and constraints, and describe our
proposed object detection and completion pipeline.

3.1 Overview

Given a 3D scene, the task of semantic instance completion focuses on recovering
oriented bounding boxes, semantic classes and their missing geometric features [23].

We further increase the difficulty of this task by constraining our input signal to a
single RGB-D frame, but still attempting to complete global object geometry for each
instance. This introduces many ambiguous scenarios where underrepresented objects
are required to be localized and completed correctly.

We present a hybrid two stage approach with a point-based probabilistic detection
module followed by a volumetric completion module.

In the first stage, the detection head takes the generated point cloud from the RGB-D
frame as the input, and outputs object proposals for the scene. For each proposed box,
our method also captures the heteroscedastic aleatoric uncertainty for box size and box
center, which we leverage at test time to generate multiple suggestions per output.

In the second stage, for each object proposal coming from the first stage, we isolate the
corresponding region in the input TSDF and point cloud, and feed it to our completion
head to predict occupancy inside the detected region.

3.2 Object detection

We employ VoteNet [15] as our detection backbone which utilizes point features from
[14], and learns to cast votes for object centers for each point, then clusters these votes
and regresses bounding box information using the extracted features and aggregated
clusters. We follow the approach of [12] to extend this initial architecture with two
additional 1D convolution heads to capture the heteroscedastic aleatoric uncertainty σ

for box size and centers. With this extension, we model the bounding box sizes and
centers as Gaussian distributions N (S , σsize) and N (C, σcenter) with initial size and center
predictions S and C as the means and the predicted σs as variances. As a result of this
modeling, our method learns bounding box center and size distributions as a function
of the data, enabling us to sample from the learned distribution at test time to generate
multiple plausible suggestions for bounding box parameters during inference. The
sampling process for a set of bounding boxes K is done by first finding ground truth
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3 Method Overview

association K′ where each of the boxes in K has a target in K′, then sampling N sizes
and centers from N (Sj, σsize) and N (Cj, σcenter) for every jth box in K, then finally out of
all the samples, select the one closest to corresponding ground truth S′ and C′ where S′

and C′ are the sizes and centers of the ground truth boxes. Figure 3.1 illustrates a set of
box samples.

Figure 3.1: Visualization of sampled bounding boxes.

Our main motivation for this extension is to address the problem of ambiguity
inherently present in the data, and provide an approach to tackle this by presenting
alternative outputs rather than making deterministic point estimates by showing we can
generate better suggestions from the learned distributions.

3.3 Instance Completion

For the task of instance completion, we make use of the 3D-Sketch architecture proposed
by [29] for the task of SSC, and rearrange it such that only occupancy is predicted as the
semantic classification is done in the previous stage. The completion is performed in
the predicted object boundaries, meaning that objects partially outside of the camera
frustum is also expected to be completed, if their boundaries are detected correctly.

The output of the whole pipeline is a completed object inside the voxel grid for each
given input detected region. This component takes a TSDF grid and an RGB image as
input, and predicts occupancy as output using a learned 3d geometric prior referred as
the “sketch” in the original paper. Staying faithful to the original grid resolution,we also
keep the grid resolution at (60,36,60) and perform completion. An illustration of our
completion module can be seen in Figure 3.2.

3.4 Joint Detection and Completion

For the task of jointly detecting and completing objects, we put the two networks
together. Both our detection and completion stages suffer from the inherent uncertainty

10



3.5 Loss functions

Figure 3.2: Visualization of our instance completion module

of the task for the objects with poor representation. To tackle this, we leverage the
probabilistic nature of our detections, and generate multiple suggestions per bounding
boxes to generate multiple suggestions for the completion regions, leading to alternative
completions.

Figure 3.3: Visualization of our pipeline

3.5 Loss functions

We follow the VoteNet implementation for the detection stage and use their proposed
loss functions, which are cross entropy for objectness and semantic classification, and
Huber loss for regressing box size, center and heading angle. To supervise the learned
distribution parameters, we add Gaussian Negative Log Likelihood(GNLL) LD which is
defined in (Equation 3.1) where D corresponds to the number of valid object proposals,
σ(xi) corresponds to the ith predicted σ, and yi and µ(xi) denote the ground truth value
and predicted value, respectively. For both box size and center, we compute GNLL and
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add it to the final loss term with coefficient λ = 2.

LD =
1
2

|D|

∑
i=0

[
log σ(xi)

2 +
(yi − µ(xi))

2

σ(xi)2

]
(3.1)

For the second stage, we use the proposed loss functions in the original 3D-Sketch
implementation, but since we removed the semantic classification, we swap the pro-
posed categorical cross entropy loss with weighted binary cross entropy loss for scene
occupancy prediction. Our weighting scheme aims to gives higher priority to the unrep-
resented parts of objects to capture the thinner object structures such as chair and table
legs, which are often ignored due to the class imbalance in the task, as empty voxels
tend to dominate a voxel grid.
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4 Experiments and Results

In this chapter, we give an overview of our data generation process, the metrics for
evaluation, our training strategy and results for a series of qualitative and quantitative
experiments to evaluate the effectiveness of our method under different constraints.

4.1 Data

For our task, we need singular RGB-D frames, coupled with object instances represented
in this frame, with oriented bounding boxes and complete ground truth geometry. With
these constraints taken into consideration, we generate data for our method from two
datasets:

• ScanNet v2 [18], which consists of 1,513 richly annotated real world scene scans
the corresponding RGB-D frames used to reconstruct them.

• Scan2CAD [7] aligns the ShapeNet [33] models with the object instances per scene
in ScanNet, and provides the object meshes.

We first preprocess the depth frames of ScanNet to align them to the scene they
belong. The 3D scene reconstructions in ScanNet are generated using real data, which
sometimes results in incomplete or incorrect semantic labeling in a per point level, which
could hinder the quality of the ground truth for instance completion, hence we include
Scan2CAD models into our pipeline.

After having the frame-scene association, we align object meshes from Scan2CAD to
the frame and generate ground truth point clouds for instance completion by sampling
5000 points from the mesh surface. This enables us with the “ground truth” for the
object’s geometry in the scene, as well as the oriented bounding boxes, where the
original ScanNet only provided axis aligned bounding boxes.

At this stage, our dataset consist of depth frames per scene, and the object instances
transferred to the frame coordinate frame. However both ScanNet and Scan2CAD
annotations are on complete indoor scene scans, not individual frames. Hence we still
lack the association of which object is represented in which frame.

To address this issue, we define a ’visibility’ metric for every object in the scene for the
current frame, with the purpose of measuring how much the object represented in a
depth frame in the scene. We define this quantity as the overlap percentage of the ground
truth point cloud with the input point cloud, and compute it by first carrying both
the frame and the object ground truth to the same voxel grid coordinates in (60,36,60)
resolution, then measuring the overlap. We refrain from using the view frustum for this

13



4 Experiments and Results

task, because an object can be inside the camera frustum but not fully represented in the
point cloud due to sensor noise, occlusions etc. For our task, we select a lower bound of
θ = 0.2 for deciding object-frame association. Although we keep this quantity per object
to perform further analysis on our method at different θ ranges.

Furthermore, we filter out the frames which have no or smaller than θ object overlap
with the input frame, and only use the classes chairs and tables.

Our dataset consists of total 8561 frames, 7180 chairs and 5519 tables in the train split,
and 2315 frames, 2107 chairs and 1488 tables in the validation split.

We use the input frames belonging to the scenes in official train/test split for all the
experiments and use chairs and tables as our semantic classes. For validation, we use
a subset of randomly selected 500 elements from the original validation set for our
experiments. We refer the reader to Table 4.1 and Table 4.2 for more statistics of our
dataset, and some example annotated frames can be seen in Figure 4.1.

Object Class \Visibility 0 - 0.2 0.2 - 0.5 0.5 - 1.0

Chairs 1708 1737 370
Tables 1043 1155 333
Total 2751 2892 703

Table 4.1: Distribution of classes and their visibilities in the validation split

Object Class \Visibility 0 - 0.2 0.2 - 0.5 0.5 - 1.0

Chairs 5605 5777 1403
Tables 3626 4216 1303
Total 9231 9993 2706

Table 4.2: Distribution of classes and their visibilities in the train split

4.2 Implementation Details

4.2.1 Training strategy

We train both of our modules separately until convergence on a single Nvidia GeForce
GTX 1080 Ti. For detection, we select batch size 12 and we use the Adam optimizer
with one cycle learning rate scheduler with range 1e-4 to 1e-3 proposed in [34] for the
detection module, and another Adam optimizer for with static learning rate of 1e-5
for the center and box size uncertainty heads for 120 epochs. We also employ rotation
augmentations up to 45 degrees to improve generalization of our method in scenes with
objects in different orientations.

For completion, we set the batch size to 1 frame due to memory constraints, and
process all the objects belonging to the frame in by mini-batching, accumulate gradients
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4.2 Implementation Details

Figure 4.1: Visualization of some of our dataset elements, raw point cloud input is
represented with green color, subsampled chairs and tables are shown with
red and blue color, respectively.

15



4 Experiments and Results

for all the individual elements in the scene. During training, we limit our operating
region to the limits of object bounding boxes , and assign higher weight of ω = 3 to the
voxels which belong to unseen ground truth regions to tackle class imbalance for our
task as the majority of the operated region is empty space.

4.2.2 Inference

At test time, we put two networks together, and first perform detection on the input
point cloud, getting the object proposals for the scene. We then filter out the boxes first
with objectness confidence score 0.5, then using 3D NMS with overlap threshold 0.25,
but keep the information of learned distribution parameters per box. At this stage, we
can generate alternative bounding boxes by sampling from the learned size and center
distributions. We then prepare completion input for each detected object (and their
alternative suggestions if we are sampling) by extracting their region from the TSDF by
setting the rest of the input as zero, then perform completion. Finally, we measure the
quality of the each of the sampled boxes by computing the intersection over union with
the corresponding ground truth, and select the best suggestion per initial proposal for
evaluation.

4.3 Experiments

In this section, we provide a series of quantitative and qualitative evaluations for both of
our modules, first separately, then jointly, and then conclude the chapter with ablation
studies and limitations of our method.

4.3.1 Object Detection

Quantitative Evaluation

For the task of object detection, we use the standard detection performance metrics in
the literature. We compute mAP(mean average precision) and AR(average recall) for
each class with 3D IoU(intersection over union) thresholds 0.25 and 0.5.

Metric N = 0 N = 5 N = 10 N = 15 N = 20
chair/AP 0.84 0.86 0.86 0.86 0.86
table/AP 0.54 0.58 0.59 0.60 0.61
mAP 0.69 0.72 0.73 0.73 0.74
chair/Recall 0.94 0.96 0.97 0.97 0.97
table/Recall 0.72 0.81 0.83 0.83 0.86
AR 0.83 0.89 0.90 0.90 0.91

Table 4.3: Object detection results with sampling thresholded IoU@0.25
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Metric N = 0 N = 5 N = 10 N = 15 N = 20
chair/AP 0.67 0.77 0.79 0.81 0.81
table/AP 0.11 0.16 0.20 0.22 0.22
mAP 0.39 0.47 0.50 0.52 0.52
chair/Recall 0.79 0.89 0.91 0.93 0.93
table/Recall 0.24 0.37 0.41 0.44 0.46
AR 0.52 0.63 0.66 0.69 0.69

Table 4.4: Object detection results with sampling thresholded IoU@0.5

Effect of sampling in object detection

We observe that our learned distribution is able to give us better center and size
suggestions, and as a result, is able to improve total detection performance.We report
the most visible improvement in the scores evaluated with IoU@0.5 threshold. Tables
Table 4.3 and Table 4.4 show the increase in mAP and AR per class with respect to
increasing number of samples when evaluated on our complete visibility range. We
also provide ablations with the individual effects of only size sampling and only center
sampling for detection. Our results with show that we are able to get 5% increase at
mAP@0.25 and 13% increase at mAP@0.5 when we use our learned distribution to create
multiple bounding boxes.

Visibility analysis

Due to the nature of our data, majority of the objects in our dataset are only partially
represented in the input point cloud, making it harder for the network to predict object
boundaries for objects that are poorly represented. We observe that the performance
for tables drop by a margin of 5% on tables and 9% on chairs when we only consider
objects poorly represented with visibility θ ∈ [0.2, 0.5).

The following tables show the detection results for θ ∈ [0.2, 0.5) and θ ∈ [0.5, 1.0].

Metric N = 0 N = 5 N = 10 N = 15 N = 20
chair/AP 0.6 0.73 0.75 0.77 0.77
table/AP 0.08 0.12 0.15 0.16 0.17
mAP 0.34 0.42 0.45 0.46 0.47
chair/Recall 0.78 0.89 0.91 0.93 0.93
table/Recall 0.23 0.33 0.36 0.39 0.41
AR 0.5 0.61 0.64 0.66 0.67

Table 4.5: Effect of sampling with θ ∈ (0.2, 0.5] and IoU @0.5

Our results show that when we are in ambiguous scenarios with poorly represented
objects, our proposed sampling scheme shows consistent gain as the number of samples
increases. However when we analyze only the well represented objects, sampling

17



4 Experiments and Results

Metric N = 0 N = 5 N = 10 N = 15 N = 20
chair/AP 0.8 0.82 0.83 0.83 0.83
table/AP 0.49 0.51 0.52 0.51 0.53
mAP 0.64 0.67 0.67 0.67 0.68
chair/Recall 0.95 0.97 0.97 0.97 0.97
table/Recall 0.77 0.79 0.81 0.82 0.82
AR 0.86 0.88 0.89 0.89 0.90

Table 4.6: Effect of sampling with θ ∈ (0.2, 0.5] and IoU @0.25

Metric N = 0 N = 5 N = 10 N = 15 N = 20
chair/AP 0.75 0.69 0.69 0.69 0.66
table/AP 0.19 0.13 0.16 0.21 0.17
mAP 0.47 0.41 0.42 0.45 0.41
chair/Recall 0.86 0.81 0.80 0.81 0.79
table/Recall 0.33 0.25 0.27 0.36 0.27
AR 0.59 0.53 0.53 0.59 0.53

Table 4.7: Effect of sampling with θ ∈ (0.5, 1.0] and IoU @0.5

Metric N = 0 N = 5 N = 10 N = 15 N = 20
chair/AP 0.86 0.86 0.83 0.85 0.84
table/AP 0.63 0.58 0.61 0.60 0.59
mAP 0.75 0.72 0.72 0.73 0.72
chair/Recall 0.97 0.97 0.95 0.96 0.95
table/Recall 0.85 0.79 0.84 0.83 0.83
AR 0.91 0.88 0.90 0.89 0.89

Table 4.8: Effect of sampling with θ ∈ (0.5, 1.0] and IoU @0.25
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multiple suggestions actually shows a slight adversarial effect on the metrics on some
cases. We believe this is due to the already good quality initial detections, and our
learned distributions are unable to improve them any further.

4.3.2 Analysis of the learned distributions

With our probabilistic detection module, we model the box sizes and box centers as
Gaussian distributions. As the ground truth distributions for these quantities are un-
known, we use the following metrics to evaluate the quality of our learned distributions
quantitatively:

• Negative log-likelihood(NLL) of N samples.

• The distance to the closest ground truth value out of N samples.

• Standard deviation of the samples to see the variance.

NLL is the minimization objective when trying to fit a Gaussian distribution to a given
data, hence lower NLL values indicated a better learned distribution. When we examine
Table 4.9, Table 4.10, Table 4.11, Table 4.12 we observe that the table size distribution is
the most challenging one to model, as it outputs the highest NLL values out of all others.
Intuitively, compared to chairs, tables come in much more different sizes and leading
to a more complex distribution to model. Chair sizes on the other hand do not vary as
much. These remarks are also supported by our other metrics, where we observe similar
trends. Table sizes have the biggest distance value to the best ground truth size, and
also have the highest standard deviation value. These findings also correlate with our
ablation on individual samplings, where we see that sampling sizes benefit tables more
than it benefits chairs. We also visit the scenario in where instead of using the learned σ,
we sampled with the variance randomly sampled from N (0, 1), and show in Table 4.13
that our learned distribution is more meaningful than random selection.

Metric/# of samples N = 5 N = 10 N = 15 N = 20

Best Distances 0.21 0.2 0.19 0.18
NLL -7.14 -10.97 -14.80 -18.18
STD 0.06 0.06 0.06 0.06

Table 4.9: Stats for size for chairs distribution.

Qualitative Results

Here we present some qualitative results of our detection module, with the visualizations
of some of the detected objects in a scene, and the change in boxes of after the sampling
operation.
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Metric/# of samples N = 5 N = 10 N = 15 N = 20

Best Distances 0.32 0.3 0.29 0.28
NLL -7.408 -11.014 -14.148 -16.852
STD 0.06 0.062 0.064 0.066

Table 4.10: Stats for center for chairs distribution.

Metric/# of samples N = 5 N = 10 N = 15 N = 20

Best Distances 0.51 0.46 0.43 0.42
NLL -4.08 -4.48 -5.28 -5.85
STD 0.11 0.12 0.12 0.12

Table 4.11: Stats for size for tables distribution.

Metric/# of samples N = 5 N = 10 N = 15 N = 20

Best Distances 0.41 0.39 0.37 0.37
NLL -7.15 -10.67 -13.61 -16.37
STD 0.06 0.06 0.06 0.07

Table 4.12: Stats for center distribution for tables.

Metric Table/Size Table/Center Chair/Size Chair/Center

Best Distances 0.9 0.6 0.4 0.46
NLL 170.587 1100.186 171.33 311.
STD 0.6 0.6 0.6 0.6

Table 4.13: Stats for random sampling.
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Figure 4.2: From left to right: Our predicted bounding boxes, ground truth bounding
boxes.
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Figure 4.3: Before and after sampling boxes from the distribution, the refinement is most
visible for the bottom right box.

4.3.3 Object Completion

Quantitative Evaluation

Our object completion module is class agnostic, it does not distinguish between classes.
Hence we evaluate our completion module’s binary occupancy outputs with scene IOU,
voxelwise precision and recall in the completed areas inside ground truth bounding
boxes. We use a TSDF grid and an RGB image features as information in this task, and
evaluate quality of the completion only in the designated area inside bounding box.
Even then we hit a IoU bottleneck with the completion quality, which is a limitation of
our method, and discuss its potential causes in section 4.6

Moreover, we also analyze the performance for the objects in the areas inside and
outside of the camera frustum, under different visibility thresholds. As expected, the
completions are better for the areas inside the camera frustum, and with more visible
inputs. These scores also act as a theoretical upper bound in our main task, as it
illustrates the maximum level of completion we can attain in the case of perfectly
aligned bounding boxes without any extra or missing boxes.

Qualitative Results

Our qualitative results in Figure 4.4 show that our network is able to generate visually
pleasing completions given perfect object boundaries and the features in it. Even with
cases with little information, it is able produce a chair-like outcome. However, this is
hard to quantify with our current metrics as thin structures like furniture legs can be
easily aligned counted as false predictions, even when the prediction as a whole was
not completely wrong. This issue is also addressed in section 4.6. Overpredicting or
underpredicting occupancy is related to the class weighting in our training strategy and
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Metric/Visibility 0.2 - 0.5 0.5-1.0 0.2-1.0

chair/scIoU 0.44 0.47 0.44
chair/Prec 0.51 0.56 0.52
chair/Recall 0.75 0.75 0.75
table/scIoU 0.45 0.52 0.46
table/Prec 0.53 0.62 0.55
table/Recall 0.73 0.76 0.74

Table 4.14: Complete object geometry

Metric/Visibility 0.2 - 0.5 0.5-1.0 0.2-1.0

chair/scIoU 0.48 0.50 0.48
chair/Prec 0.55 0.59 0.55
chair/Recall 0.79 0.76 0.78
table/scIoU 0.48 0.57 0.50
table/Prec 0.58 0.68 0.60
table/Recall 0.74 0.78 0.75

Table 4.15: Object geometry only inside frustum

discussed with more results in the ablation study.

4.3.4 Semantic Instance Completion

Quantitative Evaluation

To evaluate our main task, SIC, we use global metrics mAP at IoU@0.25 and IoU@0.5
thresholds. However, different from the detection module, this time mAP is computed
using scene IoU values instead of bounding box IoUs, and if IoU of a prediction and its
corresponding ground truth is larger than the threshold, it is accepted as true positive.
Additionally, we investigate the effect of sampling on the task of instance completion, and
show that by sampling multiple suggestions, we can boost the completion performance.

We see a promising increase of mAP in the table Table 4.16, and infer that most of
our detection + completions produce more than 0.25 IoU, but we once again face our
completion bottleneck when we look at Table 4.17. As our theoretical bottleneck for
completion was on average around 0.47, very few of the detection + completions are
able to exceed the IoU threshold of 0.5 with the ground truth completions.

Sampling effect on completions with θ ∈ [0.2, 0.5)

When we investigate only less visible objects in the scene we observe that the decrease in
detection quality also impacts the completion quality together with the small amount of

23



4 Experiments and Results

Figure 4.4: From left to right: Input scene, our prediction, ground truth
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Metric/# of samples N=0 N=3 N = 5 N = 10 N = 15 N = 20

chair/Recall 0.82 0.83 0.84 0.88 0.89 0.9
table/Recall 0.65 0.69 0.68 0.73 0.74 0.72
chair/AP 0.71 0.72 0.74 0.78 0.8 0.81
table/AP 0.46 0.5 0.49 0.54 0.55 0.53
mAP 0.59 0.61 0.62 0.66 0.67 0.67

Table 4.16: SIC results at IoU@0.25 and θ ∈ [0.2, 1.0]

Metric/# of samples N=0 N=3 N = 5 N = 10 N = 15 N = 20

chair/Recall 0.12 0.13 0.14 0.17 0.2 0.22
table/Recall 0.05 0.05 0.07 0.07 0.09 0.09
chair/AP 0.03 0.03 0.04 0.06 0.07 0.08
table/AP 0.01 0.01 0.01 0.01 0.01 0.01
mAP 0.02 0.02 0.02 0.03 0.04 0.05

Table 4.17: SIC results at IoU@0.5 and θ ∈ [0.2, 1.0]

present information in the scene and leads to worse mAP scores, but a higher gain from
our sampling, showing that refining detections elevates the completion performance, as
more meaningful inputs are fed into the completion network.

Metric N = 0 N = 5 N = 10 N = 15 N = 20

chair/AP 0.56 0.62 0.67 0.69 0.70
table/AP 0.50 0.54 0.57 0.57 0.58
chair/Recall 0.70 0.75 0.78 0.80 0.80
table/Recall 0.64 0.68 0.70 0.69 0.71
mAP 0.53 0.58 0.62 0.63 0.64

Table 4.18: SIC results at IoU@0.25 and θ ∈ [0.2, 0.5]

Qualitative Results

Our qualitative results in show that our completion performance heavily relies on the
quality of our detections, and our model is not very robust against noisy detections,
imperfect detection directly leads to an imperfect completion. However this is expected
due to the ambiguous nature of the problem, and our proposed sampling strategy is
able to elevate the quality of our reconstructions compared to the initial predictions. An
example case showing the different completions we can reach with sampling can be
found in Figure 4.6.
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Metric N = 0 N = 5 N = 10 N = 15 N = 20
chair/AP 0.02 0.03 0.03 0.04 0.04
table/AP 0.00 0.01 0.00 0.01 0.01
chair/Recall 0.11 0.13 0.15 0.17 0.18
table/Recall 0.04 0.07 0.05 0.07 0.08
mAP 0.01 0.02 0.02 0.02 0.03

Table 4.19: SIC results at IoU@0.5 and θ ∈ [0.2, 0.5]

Figure 4.5: Semantic completion results from our joint network. Left to righ: Input
depth frame, 3D-Sketch , ours and ground truth.
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Figure 4.6: Example completion suggestions made with sampled bounding boxes.
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4.4 Baseline Comparison

We compare our SIC framework with our original completion baseline, 3D-Sketch
architecture for SSC. Since 3D-Sketch is designed for the task of SSC and does not
provide instance level outputs, for a fair comparison between the two, we carry our
pipeline over to SSC domain by aggregating the detected proposals for objects in the
scene and creating a single scene representation where voxels are labeled with their
predicted semantic class.

4.4.1 Quantitative Comparison

Method scIOU sscmIOU scPrec scRec

3D-Sketch Inside Frustum 0.35 0.34 0.45 0.63
Ours Inside Frustum 0.25 0.23 0.28 0.57
Ours Inside Frustum with Sampling N = 10 0.26 0.23 0.29 0.60
3D-Sketch Outside Frustum 0.34 0.33 0.44 0.58
Ours Outside Frustum 0.25 0.22 0.30 0.57
Ours Outside Frustum with Sampling N = 10 0.27 0.25 0.33 0.60

Table 4.20: Comparison of our methods with our baseline

We observe that for the task of semantic scene completion, 3D sketch outperform our
method for most of the metrics. We believe the main advantage of 3D-Sketch against our
model is that it does not rely on the localization of objects in the scene, and it has access
to contextual information from the scene and TSDF and RGB features, giving it more
information regarding the scene. As our method heavily relies on object localization,
misaligned bounding boxes can lead to imperfect reconstructions, or missed detections
directly lead to missed reconstructions.

4.4.2 Qualitative Comparison

Qualitative comparison of SSC with our method can be seen in Figure 4.5. While we
are able recover the missing geometry better than 3D-Sketch, it is able to perform better
classification and segmentation to the scene, leading to more accurate overall predictions.
The biggest impact of this design difference can be seen in the middle row, while our
method generated plausible chair geometries, it was unable to detect the table, hence
no output for a table in the scene is generated. 3D-Sketch also failed to complete any
missing limbs from the table, but was able to extract semantic information from the
scene and output the correct class for those pixel.
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4.5 Ablation study

In this section, we examine our choices for some hyperparameters used in both detection
(λ) and completion (ω).

4.5.1 Different weighting of false negatives on completion from ground
truth

We perform ablations on how to weight the voxel occupancy classes to address the
problem of class imbalance during completion. Since most of the region to be completed
is consisting of empty space, in order to not lose the thin geometric details such as
chair and table legs. However if we increase this weight too much while the model
recovers more geometric details, it also outputs more false positives, as false negatives
are punished harder than false positives. We explore a range of ωs to weight the unseen
object regions higher during the loss computation. and force the network to output more
predictions by penalizing missing geometry more than incorrectly classified occupancies.
We also experiment with Ω, which is the parameter for weighting all the false negatives,
without any enforcement the structural information.

Metric Precision Recall IoU
Ω = 1, ω = 1 0.68 0.63 0.47
Ω = 1, ω = 3 0.57 0.73 0.47
Ω = 1, ω = 5 0.46 0.82 0.42
Ω = 3, ω = 1 0.55 0.78 0.48
Ω = 3, ω = 3 0.41 0.88 0.39

Table 4.21: Different weighting of the false negatives and their effects on completion
with GT boxes

We interpret the results from Figure 4.7 and Table 4.21 and deduct that punishing
false negatives more forces the network to predict more occupied cells, and this leads to
blockier reconstructions with more false positives giving us a higher recall score, but a
lower precision. On the other hand, treating false positives and false negatives the same
is also not a viable option due to class imbalance. We are getting way higher precision
results, but lower recall scores, unable to predict finer geometric details. We choose ω as
3 and Ω as 1 as a middle ground. Even though we get better quantitative scores when
Ω = 3, investigating qualitative results show that uplifting only unseen object structures
lead to better reconstructions.

4.5.2 Sampling only size vs only center

We further investigate the individual effects of sampling only size versus sampl, hybrid,
and no sampling. We perform N=10 sampling and compare objecte detection metrics
for the different configurations.
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Figure 4.7: Qualitative results for the effect of different weightings. Green corresponds
to the input, purple refers to the ground truth and black, red and cyan refer
to the different weighting schemes described in , in that order except for the
case both ω and Ω is equal to 1.

Size Sampling Center Sampling Dual Sampling No Sampling

chair/AP 0.80 0.80 0.86 0.84
table/AP 0.57 0.52 0.59 0.54
mAP 0.71 0.67 0.72 0.69
chair/Recall 0.88 0.88 0.97 0.94
table/Recall 0.72 0.69 0.83 0.72
AR 0.80 0.79 0.90 0.83

Table 4.22: Individual sampling comparison at IoU@0.25 and full visibility.

Size Sampling Center Sampling Dual Sampling No Sampling

chair/AP 0.67 0.68 0.79 0.67
table/AP 0.14 0.18 0.20 0.11
mAP 0.41 0.46 0.50 0.39
chair/Recall 0.78 0.83 0.91 0.79
table/Recall 0.26 0.33 0.41 0.24
AR 0.52 0.58 0.66 0.52

Table 4.23: Individual sampling comparison at IoU@0.5 and full visibility.
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Results in Table 4.22 and Table 4.23 indicate that it is hard to entirely separate size
sampling and center sampling, as both outperform the other in certain scenarios and
using hybrid is the most beneficial approach for benefiting the advantages of both size
and center sampling.

4.6 Limitations

One issue with our pipeline is the strong reliance on object detections for completion
and the weak connection between our two components, obviously, locating the object in
the scene is part of the problem definition, but in our current setting, we operate on a
single coordinate system for completion. In order to have a perfect reconstruction in our
evaluation, one must generate the object exactly at the place it is located as a ground
truth. This forces the network to learn to generate objects in multiple regions of the grid
and since we complete objects on a singular, class agnostic basis, we do not infer any
contextual information. One of the strong arguments for the task of SSC was that the
network should utilize the information in the scene when jointly inferring geometry and
semantic class, it should learn that tables tend to have chairs around them.

Another issue stems from the ill-posed nature of our problem, our input signal does
not carry rich information about the scene, which is one of the potential reasons our
completion has bottleneck. With many different sized tables in the dataset when only
partially seeing a table in a frame even humans would have trouble identifying the
exact size and geometry of this table, making it very hard for the network to generalize.
As a side effect of using dense volumetric grids, we further decrease the amount of
information our pipeline processes by reducing the operated resolution.
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5 Conclusion

With this thesis, we presented a two-stage probabilistic hybrid method that can locate,
classify and complete objects from a single depth frame. Our pipeline utilizes both
point cloud and volumetric grid representations and is able to recover object geometries
partially represented in the input. Furthermore, we challenge the ambiguity of the
task with a probabilistic detection method, and demonstrate that with our learned
distribution, we can boost both detection and completion performance.

While there are still significant limitations that introduce performance bottlenecks,
we have showed that a single depth image can be used for reconstructing object mul-
tiple instances in the scene, and inherent ambiguities of the task can be tackled with
uncertainty quantification.

Future work could address the previously mentioned limitations: Weak connection
between the two modules, can be tackled by building a stronger internal connection with
the network modules by using a uniform data representation, or by keeping the different
representations but enforcing a flow of contextual features between the two modules to
improve their awareness. The performance bottleneck due to low resolution data can
be improved by switching to a data structure capable of handling higher resolution 3D
data, such as sparse voxel grids.
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