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Optical flow feature tracking with BASALT



Outline

● Initial odometry recap and our extensions to the pipeline
● Optical flow and optimization explanation
● Analysis of results and conclusion
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Odometry Pipeline
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Our Method Summary
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Generated 3D Map



Optical Flow

● Given two images:
○ Construct “Pyramids” from the images.
○ Track the points from image I to I’ on each level of the pyramids.
○ Track the points from I’ back to I.
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Tracking a point:
● Patch Based Tracking.
● Find a warp                   that minimizes:
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Optimizing the warp:

● Compute the gradients of each point in a patch.
● Incrementally update the warp until convergence.
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Point Gradients:
● Utilizing floating points.
● Bilinear Interpolation & Central Difference

(u,v)

(u+1,v+1)

Given point (x,y) let:
- u = ⌊x⌋
- v = ⌊y⌋
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Computing the Increments:

● Compute the Jacobian based on the gradients.
● Estimate the inverse Hessian using Cholesky Decomposition.
● Apply Gauss-Newton to the calculated residual.
● The increment is applied to the rotation as:
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Results and Experiments: 
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https://docs.google.com/file/d/1sBq2UFhRIPPlRA_sejVXD5w_t7WNrfmG/preview


Results and Experiments: Trajectory Alignment
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Original OdometryOurs



Results and Experiments: XYZ difference in trajectory

Ours

Ours
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Ours Original Odometry



Relative Pose Error
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Method rmse mean median std min max

OpenCV 0.09 0.03 0.02 0.09 0.00 4.29
Ours 0.03 0.03 0.02 0.02 0.00 0.07
Original Odometry 0.04 0.03 0.03 0.02 0.00 0.17

Method rmse mean median std min max
OpenCV 4.24 3.57 2.64 2.28 1.28 10.55
Ours 0.12 0.11 0.11 0.04 0.01 0.21
Original Odometry 0.16 0.14 0.14 0.07 0.01 0.37

Absolute Pose Error



Failure Case with OpenCV Lukas-Kanade

● When tracking fails, it is not able to recover
● For left to right optical flow, Lukas-Kanade didn’t work well
● Hence we used Basalt approach for left to right
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Stereo Matching with Optical Flow: OpenCV 
Lukas-Kanade
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Stereo Matching with Optical Flow: Basalt
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Shortcomings of the Method
● Frame to frame approach slower than Key Frame approach
● Detecting new keypoints slows down the system for a while
● Drift accumulation
● Optical flow fails in case of moves with big baseline (More robust with image 

pyramids)
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Effect of the Drift ( Frame ~380)
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Effect of the Drift ( Frame ~ 1200)
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Drifting errors



Effect of the Drift ( Frame ~2200)
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Drifting errors



Possible Extensions for Shortcomings

● Frame to frame will be slower inherently, possible parallelization of code
● Divide image in a grid and detect Keypoints separately for each grid
● For drift, loop closure is necessary
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Conclusion
● Frame to frame drift is inevitable
● Good optical flow is more robust than descriptor matching
● Camera sequences with very big movements are not suitable
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