Indirect Visual Odometry with Optical Flow

Kerem Yildirir

Poyraz Kivanc Karacam

Yigit Aras Tunali

Team 2

Visual-Inertial Mapping with Non-Linear Factor Recovery

Vladyslav Usenko
Nikolaus Demmel
David Schubert
Jorg Stückler
David Cromore

Optical flow feature tracking with BASALT

Outline

- Initial odometry recap and our extensions to the pipeline
- Optical flow and optimization explanation
- Analysis of results and conclusion

Only if not enough points!

Only if not enough points!

Generated 3D Map

Optical Flow

- Given two images:
 - Construct "Pyramids" from the images.
 - Track the points from image I to I' on each level of the pyramids.
 - Track the points from I' back to I.

- Patch Based Tracking.
 Fracking a pointimizes:

$$T \in SE(2) \qquad \qquad r_i(\xi) = \frac{I_{t+1}(T\mathbf{x}_i)}{\overline{I_{t+1}}} - \frac{I_t(\mathbf{x}_i)}{\overline{I_t}} \ \forall \mathbf{x}_i \in \Omega$$

Optimizing the warp:

- Compute the gradients of each point in a patch.
- Incrementally update the warp until convergence.

• Utilizing floating points. • Point Gradients • Bilinear Interpolation & Central Difference

Computing the Increments:

- Compute the Jacobian based on the gradients.
- Estimate the inverse Hessian using Cholesky Decomposition.
- Apply Gauss-Newton to the calculated $R^{t}exp(\xi)$
- The increment is applied to the rotation as:

Results and Experiments:

Results and Experiments: Trajectory Alignment

Results and Experiments: XYZ difference in trajectory

Ours

Original Odometry

Relative Pose Error

Method	rmse	mean	median	std	min	max
OpenCV	0.09	0.03	0.02	0.09	0.00	4.29
Ours	0.03	0.03	0.02	0.02	0.00	0.07
Original Odometry	0.04	0.03	0.03	0.02	0.00	0.17

Absolute Pose Error

Method	rmse	mean	median	std	min	max
OpenCV	4.24	3.57	2.64	2.28	1.28	10.55
Ours	0.12	0.11	0.11	0.04	0.01	0.21
Original Odometry	0.16	0.14	0.14	0.07	0.01	0.37

Failure Case with OpenCV Lukas-Kanade

- When tracking fails, it is not able to recover
- For left to right optical flow, Lukas-Kanade didn't work
- Hence we used Basalt approach for left to right

Stereo Matching with Optical Flow: OpenCV

Stereo Matching with Optical Flow: Basalt

Shortcomings of the Method

- Frame to frame approach slower than Key Frame approach
- Detecting new keypoints slows down the system for a while
- Drift accumulation
- Optical flow fails in case of moves with big baseline (More robust with image pyramids)

Effect of the Drift (Frame ~380)

Effect of the Drift (Frame ~ 1200)

Effect of the Drift (Frame ~2200)

Possible Extensions for Shortcomings

- Frame to frame will be slower inherently, possible parallelization of code
- Divide image in a grid and detect Keypoints separately for each grid
- For drift, loop closure is necessary

Conclusion

- Frame to frame drift is inevitable
- Good optical flow is more robust than descriptor matching
- Camera sequences with very big movements are not suitable

References

- Visual-Inertial Mapping with Non-Linear Factor Recovery (V. Usenko, N. Demmel, D. Schubert, J. Stueckler and D. Cremers), In arXiv:1904.06504, 2019. <u>https://arxiv.org/pdf/1904.06504</u>
- Equivalence and efficiency of image alignment algorithms (Baker, Simon, and Iain Matthews), In IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 1. IEEE Computer Society; 1999, 2001. http://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.70.20&rep=rep1&type=pdf
- 3. Basalt Codebase: https://gitlab.com/VladyslavUsenko/basalt
- 4. https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html
- 5. EVO https://github.com/MichaelGrupp/evo
- 6. RPG Toolbox <u>https://github.com/uzh-rpg/rpg_trajectory_evaluation</u>